Gleichsetzungsverfahren üben

Gleichsetzungsverfahren üben, um das Lineare Gleichungssystem mit dem Einsetzungsverfahren, Gleichsetzungsverfahren, Additionsverfahren besser zu verstehen.

 

Gleichsetzungsverfahren üben um das Lineare Gleichungssystem mit dem Einsetzungsverfahren, Gleichsetzungsverfahren, Additionsverfahren besser zu verstehen.

Gleichsetzungsverfahren üben - Einfache Übung

Berechne mit dem Gleichsetzungsverfahren und wähle dann die richtige Lösung aus.

(1) 5x – 15y = 25 und (2) x - 4y = 20





(1) 10x + 12 = 2y und (2) 9x - 3y = 30





(1) 3x = 6y + 12 und (2) x - 3y = 9





(1) 8x = 56y + 4 und (2) 5x - 10y = 15





(1) 0,5x + 2y = 10 und (2) x = 12y + 4





Mittelschwierige Übung

Berechne mit dem Gleichsetzungsverfahren und wähle dann die richtige Lösung aus.

(1) 8x = 2y + 10 und (2) x - 4y = 20





(1) 3x + 9 = 12y und (2) 3x = 18+3y





(1) 3x = 6y + 9 und (2) x - 4y = 8





(1) 5x = 2y + 4 und (2) x - 2y = 10





(1) 4x + 2y = -4 und (2) 2x + 2y = 5





Schwierige Übung

Berechne mit dem Gleichsetzungsverfahren und wähle dann die richtige Lösung aus.

(1) 9x + 12 = 3y und (2) 4x - 2y = -24





(1) 5x = 20y + 5 und (2) 5x - 7y = 35





(1) 2x = 2y + 20 und (2) 2x - 4y = 35





(1) -4x + 20 = 5y und (2) -5x - y = -25





(1) 3x + 14 = y und (2) 2x - 6y = 12

*Lösungen ganz unten auf dieser Seite. 

 

Weitere Hilfs- und Lernmittel

  • Heft mit Übungen*

*Sponsored Link. 

Lösungen und Rechenwege

Gleichsetzungsverfahren üben

Gleichsetzungsverfahren üben – Einfache Übungen

Aufgabe: (1) 5x – 15y = 25 und (2) x – 4y = 20

umformen nach x:

(1): 5x-15y = 25 | + 15y

<=> 5x = 25 + 15y |/5

<=> x = 5 + 3y

(2): x – 4y = 20 | + 4y

<=> x = 20 + 4y

gleichsetzen: 5 + 3y = 20 + 4y

auflösen nach y: <=> 5 + 3y = 20 + 4y |-3y

<=> 5  =  20 + y |-20

<=> -15  =  y

einsetzen in (1): 5x-15*-15 = 25 |-5

<=> 5x + 225 = 25 |-225

<=> 5x = -200 |/5

<=> x = -40

Aufgabe: (1) 10x  +  12 = 2y und (2) 9x – 3y = 30

umformen nach y:

(1): 10x + 12 = 2y |/2

<=> 5x + 6 = y

(2): 9x-3y = 30 |-9x

<=> -3y = 30-9x |/(-3)

<=> y = -10 + 3x

gleichsetzen: 5x + 6 = -10 + 3x

auflösen nach x: <=> 5x + 6 = -10 + 3x |-3x

<=> 2x + 6 = -10 |-6

<=> 2x = -16 |/2

<=> x = -8

einsetzen in (1): 10*-8 + 12 = 2y

<=> -68 = 2y |/2

<=> -34 = y

Aufgabe: (1) 3x = 6y  +  12 und (2) x – 3y = 9

umformen nach x:

(1): 3x = 6y + 12 |/3

<=> x = 2y + 4

(2): x-3y = 9 | + 3y

<=> x = 9 + 3y

gleichsetzen: 2y + 4 = 9 + 3y 

auflösen nach y: 2y + 4 = 9 + 3y |-2y

<=> 4 = 9 + y |-9

<=> -5 = y

einsetzen in (1): 3x = 6*(-5) + 12

<=> 3x = -18 |/3

<=> x = -6

Aufgabe: (1) 8x = 56y +  4 und (2) 5x – 10y = 15

umformen nach x:

(1): 8x = 56y + 4 |/8

<=> x = 7y + 0,5

(2): 5x-10y = 15 | + 10y

<=> 5x = 15 + 10y |/5

<=> x = 3 + 2y

gleichsetzen: 7y + 0,5 = 3 + 2y

auflösen nach y: 7y + 0,5 = 3 + 2y |-0,5

<=> 7y = 2,5 + 2y |-2y

<=> 5y = 2,5 |5

<=> y = 0,5

einsetzen in (1): 8x = 56*0,5 + 4

<=> 8x = 32 |/8

<=> x = 4

Aufgabe: (1) 0,5x  +  2y = 10 und (2) x = 12y  +  4

umformen nach x:

(1): 0,5x + 2y = 10 |-2y

<=> 0,5x = 10-2y |/0,5

<=> x = 20-4y

(2): x = 12y + 4

gleichsetzen: 20-4y = 12y + 4 

auflösen nach y: 20-4y = 12y + 4 | + 4y

<=> 20 = 16y + 4 |-4

<=> 16 = 16y |/16

<=> 1 = y

einsetzen in (1): 0,5x + 2*1 = 10

<=> 0,5x + 2 = 10 |-2

<=> 0,5x = 8 |/0,5

<=> x = 16

Gleichsetzungsverfahren üben – Mittelschwierige Übungen

Aufgabe: (1) 8x  =  2y  +  10 und (2) x – 4y  =  20

umformen nach x:

(1): 8x = 2y + 10 |/8

<=> x = 0,25y + 1,25

(2): x-4y = 20 | + 4y

x = 20 + 4y

gleichsetzen: 0,25y + 1,25 = 20 + 4y

auflösen nach y: 0,25y + 1,25 = 20 + 4y |-20 und |-0,25y

<=> -18,75 = 3,75y |/3,75

<=> -5 = y

einsetzen in (1): 8x = 2*(-5) + 10

<=> 8x = 0 |/8

<=> x = 0

Aufgabe: (1) 3x  +  9  =  12y und (2) 3x  =  18  +  3y

umformen nach x:

(1): 3x + 9 = 12y |-9

<=> 3x = 12y-9 |/3

<=> x = 4y-3

(2): 3x = 18 + 3y |/3

<=> x = 6 + y

gleichsetzen: 4y-3 = 6 + y

auflösen nach y: 4y-3 = 6 + y |-y

<=> 3y-3 = 6 | + 3

<=> 3y = 9 |/3

<=> y = 3

einsetzen in (1): 3x + 9 = 12*3

<=> 3x + 9 = 36 |-9

<=> 3x = 27 |/3

<=> x = 9

Aufgabe: (1) 3x  =  6y  +  9 und (2) x – 4y  =  8

umformen nach x:

(1): 3x = 6y + 9 |/3

<=> x = 2y + 3

(2): x-4y = 8 | + 4y

<=> x = 8 + 4y

gleichsetzen:  2y + 3 = 8 + 4y

auflösen nach y: 2y + 3 = 8 + 4y |-2y

<=> 3 = 8 + 2y |-8

<=> -5 = 2y |/2

<=> -2,5 = y

einsetzen in (1): 3x = 6*-2,5 + 9

<=> 3x = -6 |/3

<=> x = -2

Aufgabe: (1) 5x  =  2y +  4 und (2) x – 2y  =  10

umformen nach x:

(1): 5x = 2y + 4 |/5

<=> x = 0,4y + 0,8

(2): x-2y = 10 | + 2y

<=> x = 10 + 2y

gleichsetzen: 0,4y + 0,8 = 10 + 2y

auflösen nach y: 0,4y + 0,8 = 10 + 2y |-2y

<=> -1,6y + 0,8 = 10 |-0,8

<=> -1,6y = 9,2 |/(-1,6)

<=> y = -5,75

einsetzen in (2): x-2*(-5,75) = 10 |-11,5

<=> x = -1,5

Aufgabe: (1) 4x  +  2y  =  -4 und (2) 2x  +  2y  =  5

umformen nach x:

(1): 4x + 2y = -4 |-2y

<=> 4x = -4-2y |/4

<=> x = -1-0,5y

(2): 2x + 2y = 5 |-2y

<=> 2x = 5-2y |/2

<=> x = 2,5-y

gleichsetzen: -1-0,5y = 2,5-y

auflösen nach y: -1-0,5y = 2,5-y | + y

<=> -1 + 0,5y = 2,5 | + 1

<=> 0,5y = 3,5 |/0,5

<=> y = 7

einsetzen in (2): 2x + 2*7 = 5 

<=> 2x + 14 = 5 |-14

<=> 2x = -9 |/2

<=> x = -4,5

Gleichsetzungsverfahren üben – Schwierige Übungen

Aufgabe: (1) 9x  + 12  =  3y und (2) 4x – 2y  =  -24

umformen nach y:

(1): 9x + 12 = 3y |/3

<=> y = 3x + 4

(2): 4x-2y = -24 |-4x

<=> -2y = -24-4x |/(-2)

<=> y = 12 + 2x

gleichsetzen: 3x + 4 = 12 + 2x

auflösen nach x: 3x + 4 = 12 + 2x |-2x

<=> x + 4 = 12 |-4

<=> x = 8

einsetzen in (1): 9*8 + 12 = 3y

<=> 84 = 3y |/3

<=> y = 28

Aufgabe: (1) 5x  =  20y  +  5 und (2) 5x – 7y  =  35

umformen nach x:

(1): 5x = 20y + 5 |/5

<=> x = 4y + 1

(2): 5x-7y = 35 | + 7y

<=> 5x = 35 + 7y |/5

<=> x = 7 + (7/5)y

gleichsetzen: 4y + 1 = 7 + (7/5)y

auflösen nach y: 4y + 1 = 7 + (7/5)y |-(7/5)y

<=> (13/5)y + 1 = 7 |-1

<=> (13/5)y = 6 |/(13/5)

<=> y = 30/13

einsetzen in (1): 5x = 20*(30/13) + 5

5x = 600/13  + 5

<=> 5x = 665/13 |/5

<=> x = 133/13

Aufgabe: (1) 2x  =  2y  +  20 und (2) 2x – 4y  =  35

umformen nach x:

(1): 2x = 2y + 20 |/2

<=> x = y + 10

(2): 2x-4y = 35 | + 4y

<=> 2x = 35 + 4y |/2

<=> x = 17,5 + 2y

gleichsetzen:  y + 10 = 17,5 + 2y

auflösen nach y: y + 10 = 17,5 + 2y |-y

<=> 10 = 17,5 + y |-17,5

<=> -7,5 = y

einsetzen in (1): 2x = 2*-7,5 + 20

<=> 2x = 5 |/2

<=> x = 2,5

Aufgabe: (1) -4x  +  20  =  5y und (2) -5x -y  =  -25

umformen nach y:

(1): -4x + 20 = 5y |/5

<=> y = (-4/5)x + 4

(2): -5x-y = -25 | + 5x

<=> -y = -25 + 5x |/(-1)

<=> y = 25-5x

gleichsetzen: (-4/5)x + 4 = 25-5x

auflösen nach x: (-4/5)x + 4 = 25-5x | + 5x

<=> (21/5)x + 4 = 25 |-4

<=> (21/5)x = 21 |/(21/5)

<=> x = 5

einsetzen in (1): -4*5 + 20 = 5y

<=> 0 = 5y |/5

<=> 0 = y

Aufgabe: (1) 3x  +  14 =  y und (2) 2x – 6y  =  12

umformen nach y:

(1): y = 3x + 14

(2): 2x-6y = 12 |-2x

<=> -6y = 12-2x |/(-6)

<=> y = -2 + (1/3)x

gleichsetzen: 3x + 14 = -2 + (1/3)x

auflösen nach x: 3x + 14 = -2 + (1/3)x |-3x

<=> 14 = -2-(8/3)x | + 2

<=> 16 = -(8/3)x |/-(8/3)

<=> -6 = x

einsetzen in (1): 3*-6 + 14 = y

<=> -4 = y

Nach oben scrollen